沙罗

时间:2023-09-13 06:22:54编辑:资料君

1,沙罗周期131是什么

沙罗周期 沙罗周期是日食和月食的周期,是指月球在它的轨道盘上运行一周(以便月球交点沿着轨道公转一周)所需的时间——18年零10天。
一个沙罗周期是6585 + 1/3 天(相当于18年11.3日或18年10.3日(如果有5个闰年)),这是古巴比伦人对日食的观测后发现的其周期性。
日食和月食统称交食。由日月食的原理可看出,交食的出现与日、地、月三者的会合运动密切相关,此会合运动具有周期性,所以日月食自然也应有周期性。交食的周期是古代巴比伦人发现的,叫做“沙罗周期”(“沙罗”是重复的意思),为18年零11天多一点。即6585.32天。
一年内可发生多少次月食呢?对全地球而言,一年内最多发生3次,有时1次也不发生,日食每年最多可发生5次,最少也要发生2次。这么看来,每年发生日食的次数比月食多,可是为什么人们总是看到月食的机会比日食多呢?这是由于日食带的范围小,地球上只有局部地区可见;对于某一确定地点而言,平均每3年左右才可以看到一次日偏食,300多年才可以看到一次日全食。而月食一旦发生,处于夜晚的半个地球上的人都可以看到,对某一地区平均而言,看到月食的机会是发生月食次数的一半,因此人们看到月食的机会比日食多。
由于地球绕太阳和月亮绕地球的公转运动都有一定的规律,因此日食和月食的发生也具有其循环的周期性。
18年11天8小时的沙罗周期用来预测相同食的再度发生上非常有用,因为他和月球轨道的三种周期有关:交点月、近点月和朔望月。当食发生时,不是月球位于地球和太阳之间 (日食),就是地球介于太阳和月球之间 (月食),这种现象只有在新月或满月才会出现,因此决定月相变化的朔望周期,29.53天,就有关系了。但是,并不是每次的满月或新月,地球或月球的影子都能落在相对的天体上,因此食要能发生,这三个天体还必须接近在同一条线上,这种情况只会出现在月球穿越黄道面上的两个交点 (升交点或降交点)之一时,月球穿越黄道面上同一个交点的周期经测定是27.21天。最后,如果食要有相同的现象和持续时间,那么这两次食的地球和月球还要有相同的距离,要出现相同距离的周期是近点月,时间间隔是27.55天。
沙罗周期的起源是223个朔望月的时间长度大约与242个交点月相似,有与239个近点月接近 (大约只相差不到2小时)。这意味着经过一个沙罗周期,月球所经历的朔望月、交点月和近点月几乎都是整数,地球、太阳和月球三者的几何关系几乎完全一样:月球在相同的交点上,有着相同的相位和与地球相同的距离。知道在某一天曾经发生一次食,则经过一个沙罗周期之际,几乎一样的食将再度发生。然而,沙罗周期 (18.031年)与月球的进动周期 (18.60年)并不相同,因此即使地球、太阳和月球三者的几何关系几乎完全一样,但以恒星为背景的月球位置仍然不同。
沙罗周期的日数包含了?天的分数,不是整数使得问题更为复杂。由于地球的自转使得使得经过完整的沙罗周期当天发生的食将延后约8个小时。在日食的情况下,这意味者能看见日食的区域将西移120°,或是三分之一个球面,因此在相同的地点上,每三次只能看见其中的一次。在月食的情况下,下一次的月食在相同的地点上看见月球在地平线上的时间可能是一样的长,但如果等待三次沙罗周期 (54年1个月,几乎大约就是19756日) 之后的月食会在当天几乎相同的时间出现,这就是所谓的3沙罗周期或exeligmos (希腊语:"转轮")。
这个时间长度,正是我们常常听说的“沙罗周期”。“沙罗”一词在拉丁语里就是重复的意思,每个沙罗周期平均约有71次交食,包括日食43次,月食28次。
有了沙罗周期,我们就可以预报日食了。例如1991年7月11日,发生了一次日全食,掩食带穿过拉丁美洲及太平洋地区。我们往前推18年零11天,1973年6月30日一定也发生了一次日食,查阅资料发现确有此事,那次日全食的掩食带横穿了非洲大陆。如果往后推一个沙罗周期的时间,我们就能算出2009年7月22日也将发生一次日食,这就是即将发生在我国长江流域的日全食。


由於地球和月球的运动所产生的日、月食天文现象,早为古巴比伦人所发现,因日、月的运动都是有规律的周期性运动,致交食也是有一定的规律性,并且必然会周期性的出现。此周期循环的时间为18年又11.3天(如果在这段时期中有五个闰年,就成为18年又10.3天),在新周期内日月食又依序出现,且与前个周期所发生者相似,亦即每次交食后经过六五八五?三二天,必会发生另一次类似的交食现象。这个周期即称为“沙罗周期”。“沙罗”的原意本就是重复的意思。


沙罗周期131是指第131个沙罗周期

2,日食发生的规律——沙罗周期是什么?

1.每年在全球范围内大多会发生2次日食。有时是3次或4次,甚至更多,那么日食的发生究竟有什么规律呢?日月食的发生,必须是新月和满月出现在白道和黄道交点附近的一定界限内,这个界限就是食限。计算表明,如果新月出现在交点附近18°,就可能发生日食,当距离小于15°时,就必定有日食发生;如果满月出现在交点附近12°,就可能发生月食,在10°以内,就一定发生月食。黄道和白道的升交点和降交点相距180°,我们把太阳连续2次通过升交点(或降交点)的时间间隔,称为1个食年。顾名思义,日食发生的规律,就与食年有着密切的关系。当太阳通过交点时,就有可能发生日月食,这段时间叫做食季。1个食年内,太阳一共通过2次交点,就有2个食季。太阳每天大约在恒星背景上移动1°。根据上面的数据,我们大概算出日食的食季有36天(交点前后18天),月食的食季只有24天(交点前后12天)。我们知道一个朔望月大约是29天半,在日食的食季中必定有1个朔望月,所以必定有1次日食发生,因此每个食年内至少发生2次日食。而月食的食季比朔望月短,所以在一个食年内很可能没有月食发生。我们通常所说的回归年是指地球绕太阳公转的周期,而食年除了公转影响外,月球的运动也要考虑进去。经过计算我们发现,食年大约是346.62天,比回归年短19天。由此就可能产生2种特殊情况:①某个回归年内包含2个完整食季和1个不完整食季。这样最多可以产生5次日食和2次月食,1935年就发生了这样的情况。②回归年内有2个不完整食季(年初、年末各1个)和1个完整食季,这样会最多产生4次日食和3次月食,例如1917年。但通常情况下每年还是只有2次日食和2次月食。2.月食常见还是日食常见?通过过往的统计记录我们发现,日食和月食发生的比例大约为4:3。对于整个地球而言,日食的次数确实比月食多,但对于地球上某个地方来说,看到月食的次数却要远远多于日食。太阳照射地球投在月球那个距离上的阴影区域,直径大约是月球的2.5倍。每次月食,地球上可以看到月亮的半球都可以观测到。而日食发生时月球的本影投射到地球表面形成的全食带最宽不过270千米。所以每次能看到日食,特别是日全食的范围是很小的。日食,都是发生在朔,而发生日食的朔之后紧跟着的望,却并不是一定会发生月食。之所以月食比日食发生的次数少,是和它们的食限有关。发生日、月食的条件除了要在朔、望之外,还有就是月球要在黄白交点附近。当月球出现在黄白焦点两边各18°的范围内时,就可能会发生日食,而只有月球出现在两边各12°左右时,才有可能发生月食。我们可以简单计算一下,日食的食限是36°,太阳在黄道上运行过这一段差不多需要36天,而36天内必然会有1个朔,就至少会发生1次日食。而1年内至少有2次月球出现在黄白焦点附近,日食食限内又赶上朔的机会,因此1年至少发生2次日食。与之相比,月食的食限是24°,一个朔望月大约是29.5天,那么24天内就有可能没有望,因此不是每次日食都有与之相对应的一次月食发生。3.前面讲了日食发生的规律,那么我们如何期道具体整何时何地会发生日食呢?在日月食的成因中,有2个必要条件。①时间,就是指朔日和望日,②空间位置,就是指黄白交点附近。前者我们可以和月球绕地公转的周期朔望月联系起来,后者我们也可以和月球连续2次通过升交点(或降交点)的时间间隔——交点月关联上。由此我们可以想到日月食发生的周期也和朔望月、交点月一样有规律性。交点月=27.212220日朔望月=29.530588日我们要想找到日月食发生规律的循环周期,就要求出这两个数的最小公倍数。通过计算我们得到:242交点月=6585.3572日223朔望月=6585.3211日这两个时间只相差0.0361日,因此我们可以把6585.3211日近似看作朔望月和交点月的最小公倍数。从我们地球上任意一点观测,太阳和月亮经过223个朔望月,都会运行到原来的位置,这也是日月食发生的一个循环周期。这个时间可以近似为18年零11天,最早发现这一规律的古巴比伦人,把它称为沙罗周期,其中“沙罗”就有“重复”的意思。读到这里,您可能会发现,如果今天发生了一次日食或月食的话,18年零11天之后就一定会发生一次情况类似的日食或月食。但在地球上发生的相邻两次日食的间隔,却不是这个时间。在奥博尔于1878年发表的《食典》中,记录了从公元前1207年到公元2161年间的8000次日食和5200次月食的计算日期及全食带等相关信息。看过此书我们发现,平均在18年零11天的沙罗周期内有42次日食发生。这就意味着,沙罗周期内有42个独立的日食系统在进行着,而它们彼此间并没有关系。我们把这些不同的日食系统称为沙罗食系。4.同一沙罗食系中日食的变化规律由于沙罗周期只是交点月和朔望月的近似公倍数,所以前后两个沙罗周期中,日月食出现的情况不完全相同。这是因为交食情况还需要考虑另外2个因素:①太阳周年视运动过黄白交点的周期——食年;②连续两次过近地点的周期——近点月。这两个周期的长度如下:19食年=19×346.62003=6585.7806日239近点月=239×27.554550=6585.5376日由此看出242交点月,239近点月,19食年和沙罗周期(223朔望月)有细微的差别,这种差别就使得沙罗周期同一食系的日食会有规律地变化。首先,223朔望月有6585.3211日,它不是日的整数,还有0.3211小数。譬如,在这一次沙罗周期中某次日食恰好发生在某地的正午,一个沙罗周期后,地球自西向东旋转了6585.3211圈。0.3211圈相当于地球经度115°,所以第二次发生的日食,比上次见食地方经度向西大约移动了115°,相当于时间推迟了7小时42分。再有,223朔望月比19食年短0.4595日,太阳每天沿黄道东行大约1°,短0.4595日就等于短了28′。所以每隔1个沙罗周期,太阳就会少移28′,或者说它的位置比上次偏西28′。就月球位置而言,223朔望月比242交点月短0.0361日。月亮每天在白道上运动的平均速度为13°23′,0.0361日就等于少移28.5′,也就是说每隔1个沙罗周期后,月球位置也比上次偏西28.5′。这样一来,每隔1个沙罗周期,日月相合的位置约西移28′。如果前一次日食发生在降交点附近,那么日月相合位置西移,就意味着下一次日食发生时,月球位置向北移动了一些,月影在地球上的位置也比上次偏北。同理,如果日食发生在升交点附近,那么下一次的日食位置就要比上次偏南。最后,223个朔望月比239个近点月短0.2165日,在这段时间内,月球大约运动了2°~3°,使得月球的视直径发生3″左右的变化。此外,由于沙罗周期为18年零11天左右,并非整数年,使得太阳的视直径可能有5″的变化,这样同沙罗食系的日食,每过1个周期后,全食的持续时间也就有了变化。综上所述,如果日食发生在升交点附近,这一沙罗食系中的第一次日食开始于北半球纬度很高的北极区,而且是食分最小的偏食。每隔1个沙罗周期后,纬度逐渐南移,而经度西移,食分逐渐增大。经过9~16个沙罗周期后,会形成中心食。在经过42~48个沙罗周期后,经过赤道向南移,再次进入偏食阶段,食分逐渐减小。再经过9~16个沙罗周期,靠近南极,从而结束这一系统。同样,如果日食发生在降交点附近,则移动方向相反,由南极北移经赤道,至北极结束。这个系统前后共经过了68~75个沙罗周期,也就是1152~1440年。

3,中岛美嘉的《沙罗》 歌词

歌曲名:沙罗歌手:中岛美嘉专辑:胧月夜-祈り「沙罗」词:中岛美嘉曲:叶加瀬太郎编曲:野崎良太歌:中岛美嘉歌(うた)う事(こと)が 出来(でき)ないなら/若是不能歌唱私(わたし)はガラクタになるわ.../我将变为无用的存在最近(さいきん)そう 魇(うな)されては/最近 被魇到了同(おん)じ梦(ゆめ)缲(く)り返(かえ)す.../总做著同样的梦长(なが)い长(なが)い 道(みち)の途中(とちゅう)/长长的路途中月(つき)だけが 行(ゆ)く先(さき)照(て)らし/只有月光照著前方贵方(あなた)に乗(の)り 息(いき)を潜(ひそ)め/接近你 屏住呼吸悪梦(あくむ)を食(く)べ尽(つく)すの/将恶梦食尽杀伐(さつばつ)とした/战乱杀气时代(じだい)に不安(ふあん)を感(かん)じ/感觉到时代的不安押(お)し付(つ)けた爱(あい)は/强硬的爱虚(むな)しく天(てん)を煽(あお)る/将虚幻的天空煽动まだ この未来(みらい)を信(しん)じて/还相信著未来あの 鸟(とり)のように空(そら)に 愿(ねが)いをこめて/像那鸟儿一样将愿望收于天空今(いま) 时(とき)は流(なが)れ何时(いつ)かは/现在时间将流向何处また 星(ほし)はきっと美(うつく)しく光(ひか)るでしょう星星还在闪耀著美丽光芒膝(ひざ)に颜(かお)を 埋(う)めながら/将脸埋在膝盖中夜(よる)に胁(おび)えているならば/害怕著夜晚的话枕元(まくらもと)に 愿(ねが)いを込(こ)め/就将愿望装在枕头中吧必(かなら)ず来(く)る朝(あさ)へと/早晨一定会到来霞(かす)んだ空(そら)に/布满霞光的天空雨降(あめふ)らす力(ちから)も无(な)く/没有下雨的余力进(すす)み行(ゆ)く足(あし)が/前进的脚步切(せつ)なく胸(みね)を焦(こ)がす/让心胸难过焦灼まだ この世界(せかい)を信(しん)じて/还相信著这世界あの 希望(きぼう)达(たち)が梦(ゆめ)で终(お)わらぬ様(よう)に/那些希望呀像不会醒来的梦一般今(いま) 时(とき)は流(なが)れ何时(いつ)かは/现在时间将流向何处その爱(あい)はきっと 深(ふか)く伝(つた)わるでしょう/那份爱一定会深切地传达到吧霞(かす)んだ空(そら)に/布满霞光的天空雨降(あめふ)らす力(ちから)も无(な)く/没有下雨的余力进(すす)み行(ゆ)く足(あし)が/前进的脚步切(せつ)なく胸(みね)を焦(こ)がす/让心胸难过焦灼まだ この世界(せかい)を信(しん)じて/还相信著这世界あの 希望(きぼう)达(たち)が梦(ゆめ)で终(お)わらぬ様(よう)に/那些希望呀像不会醒来的梦一般今(いま) 时(とき)は流(なが)れ何时(いつ)かは/现在时间将流向何处その爱(あい)はきっと 深(ふか)く伝(つた)わるでしょう/那份爱一定会深切地传达到吧http://music.baidu.com/song/55608476

4,求中岛美嘉《明日世界が终わるなら 》的中文歌词

明日世界が 终わるとしたら
如若明天世界就将毁灭的话
君をこんな风に 抱きながら 眠りたい
也想要这样抱着你入睡
当たり前だと 呼べるものほど
那些理所当然的东西
きっと爱しいから 哀しいよね
正因为会好好珍惜 所以也会因此而悲伤
眠る君 いつまでも见てる
熟睡着的你 不论何时我都凝视着
「爱してる」って伝える他に
除了告诉你「我爱你」
何が出来るの
我又还能做些什么呢
残された时间があるなら
如若还有残留的时间的话
君をきつく抱きしめてたいよ
我只想紧紧地抱住你
微风に揺れ 散った花びら
在微风中摇曳的飘零的花瓣
きっと同じくらい 壊れやすい この世界
就如同这容易破碎的世界一般
だけど何时しか 忘れかけてた
但是我是从什么时候开始 差点就要忘记
君と过ごす日々が 奇迹だって
我和你在一起度过的日子 其实是一个奇迹
一雫 涙が流れた
一滴 泪水滑落
「爱してる」って伝える他に
除了告诉你「我爱你」
何が出来るの
我又还能做些什么呢
未来を约束するよりも
相比约定未来
今私をきつく抱きしめて
请紧紧地抱紧现在的我
明日のことは
明天会如何
谁にも分からなくて
谁也不知道
泣けるほどに
快要哭了一般
君と过ごせる今が 爱しい
如此珍爱能与你度过的此时此刻
「爱してる」って伝える他に
除了告诉你「我爱你」
何が出来るの
我又还能做些什么呢
残された时间があるなら
如若还有残留的时间的话
君に触れていたいよ
好想要再触摸着你
爱することの他に
我除了爱你
何が出来るの
我又还能做些什么呢
未来を约束するよりも
相比约定未来
今私をきつく抱きしめて
请紧紧地抱紧现在的我

转自http://tieba.baidu.com/p/1798721074

5,真珠美人鱼 沙罗哪集出场???

第一部35集 沙罗被太郎感动,阻止海啸。
第一部47集,沙罗怀着对太郎的爱与恨,交给太郎到大海里的邀请卡。
第一部48集,凯特为了要得到征服陆地的力量讨好沙罗。
第一部51,52满怀怨恨的沙罗要她们不要相信爱情神话,太郎则是向沙罗不断道歉,还深爱太郎的沙罗终于被感动,回复原来的橙色美人鱼公主,联手打败凯特,最后沙罗决定离开大家在海的深处永远陪伴凯特。
第二部2集沙罗以幻影形势告诉露亚海斗应该没有死。
第二部最39集,沙罗参加演唱会

第一部35集是第一次出场哦楼主可以慢慢看的嘛。。。

6,有关月球的资料

月球详细的资料

月球俗称月亮,也称太阴。月球的年龄大约也是46亿年,它与地球形影相随,关系密切。月球也有壳、幔、核等分层结构。最外层的月壳平均厚度约为 60-65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的3/11。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月面的重力差不多相当于地球重力的 1/6。

月球上面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“ 海 ”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。

月球的正面永远向着地球。另一方面,除了在月面边沿附近的区域因天秤动而间中可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。

月球背面的一大特色是它几乎没有月海这种较暗的月面特征。而当探测器运行至月球背面时,它将无法与地球直接通讯。

轨道资料

平均轨道半径 384,400千米

轨道偏心率 0.0549

近地点距离 363,300千米

远地点距离 405,500千米

平均公转周期 27天7小时43分11.559秒

平均公转速度 1.023千米/秒

轨道倾角 在28.58°与18.28°之间变化

(与黄道面的交角为5.145°)

升交点赤经 125.08°

近地点辐角 318.15°

物理特征

赤道直径 3,476.2 千米

两极直径 3,472.0 千米

扁率 0.0012

表面面积 3.976×107平方千米

扁率 0.0012

体积 2.199×1010 立方千米

质量 7.349×1022 千克

平均密度 水的3.350倍

赤道重力加速度 1.62 m/s2

地球的1/6

逃逸速度 2.38千米/秒

自转周期 27天7小时43分11.559秒

(同步自转)

自转速度 16.655 米/秒(于赤道)

自转轴倾角 在3.60°与6.69°之间变化

(与黄道的交角为1.5424°)

反照率 0.12

满月时视星等 -12.74

表面温度(t) -233~123℃ (平均-23℃)

大气压 1.3×10-10 千帕

月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。

相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。

因为月球的自转周期和它的公转周期是完全一样的,我们只能看见月球永远用同一面向著地球。自月球形成早期,月球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38 毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15 微秒。

月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为天秤动。又由于月球轨道倾斜于地球赤道,因此月球在星空中移动时,极区会作约7度的晃动,这种现象称为天秤动。再者,由于月球距离地球只有60地球半径之遥,若观测者从月出观测至月落,观测点便有了一个地球直径的位移,可多见月面经度1度的地区。这种现象称为天秤动。

严格来说,地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。

很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实,轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星(即月球)本身的轨道面。在这个定义习惯很适合一般情况(例如人造卫星的轨道)而且是数值相当固定的,但月球却非如此。

月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持著5.145 396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由 28.60°(即23.45°+ 5.15°) 至18.30°(即23.45°- 5.15°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎6.69°(即5.15° + 1.54°)及3.60°(即5.15° - 1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.002 56°的摆动,称为章动。

白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食;

月球的周期 名称 Value (d) 定义

恒星月 27.321 661 相对于背景恒星

朔望月 29.530 588 相对于太阳(月相)

分点月 27.321 582 相对于春分点

近点月 27.554 550 相对于近地点

交点月 27.212 220 相对于升交点

月球轨道的其它特征 名称 数值 (d) 定义

默冬章 (repeat phase/day) 19 年

平均月地距离 ~384 400 千米

近地点距离 ~364 397 千米

远地点距离 ~406 731 千米

轨道平均偏心率 0.0549003

交点退行周期 18.61 年

近地点运动周期 8.85 年

食年 346.6 天

沙罗周期 (repeat eclipses) 18 年 10/11 天

轨道与黄道的平均倾角 5°9'

月球赤道与黄道的平均倾角 1°32'

人类登月探索:

第一件到达月球的人造物体是前苏联的无人登陆器月球2号,它于1959年9月14日撞向月面。月球3号在同年10月7日拍摄了月球背面的照片。月球9号则是第一艘在月球软著陆的登陆器,它于1966年2月3日传回由月面上拍摄的照片。另外,月球10号于1966年3月31日成功入轨,成为月球第一颗人造卫星。

在冷战期间,美利坚合众国和前苏联一直希望在太空科技领先对方。这场太空竞赛在1969年7月20日第一名人类登陆月球时进入高潮。美利坚合众国阿波罗11号的指令长尼尔·阿姆斯特朗是踏足月球的第一人,而尤金·塞尔南则是最后一个站立在月球上的人,他是1972年12月阿波罗17号任务的成员。参看: 月球宇航员列表

阿波罗11号的太空人留下了一块9英吋乘7英吋的不锈钢牌匾在月球表面,以纪念这次登陆及为有可能发现它的其他生物提供一些资料。

牌匾上绘有地球的两面,并有三名太空人及当时美利坚合众国总统尼克逊的签署。

6次的太阳神任务及3次无人月球号任务(月球16、20、24号)把月球上的岩石及土壤样本带回地球。

在2004年2月,美利坚合众国总统乔治·沃克·布什提出于2020年前派人重新登月。欧洲航天局及中华人民共和国亦有计划发射探测器前往月球。欧洲的Smart 1探测器于2003年9月27日升空,并于2004年11月15日进入绕月轨道。它将会勘察月球环境及制作月面X射线地图。

中华人民共和国亦积极开展探月计划,并寻求开采月球资源的可行性,尤其是氦同位素氦-3这种有望成为未来地球能源的元素。有关中华人民共和国探月计划,见嫦娥工程条目。

日本及印度亦不甘后人。日本已初步订出未来探月的任务。日本的宇宙航空研究开发机构甚至已著手计划的有人的月球基地。印度则会先发射无人绕月探测器Chandrayan。

有关月亮的神话:

在中华人民共和国古代神话中,关于月亮的故事数不胜数。在古希腊神话中,月亮女神的名字叫阿尔忒弥斯,她是太阳神阿波罗的孪生妹妹,同时她也是狩猎女神。月球的天文符号好象弯弯的月牙儿,象征着阿尔忒弥斯的神弓。

月球是地球唯一的天然卫星,是距离我们最近的天体,它与地球的平均距离约为384401千米。它的平均直径约为3476千米,比地球直径的1/4 稍大些。月球的表面积有3800万千米,还不如我们亚洲的面积大。月球的质量约7350亿亿吨,相当于地球质量的1/81,月面重力则差不多相当于地球重力的1/6。

月球的轨道运动 月球以椭圆轨道绕地球运转。这个轨道平面在天球上截得的大圆称“白道”。白道平面不重合于天赤道,也不平行于黄道面,而且空间位置不断变化。

周期173日。

月球的自转 月球在绕地球公转的同时进行自转,周期27.32166日,正好是一个 恒星月,所以我们看不见月球背面。这种现象我们称“同步自转”,几乎是卫星世界的普

遍规律。一般认为是行星对卫星长期潮汐作用的结果。天平动是一个很奇妙的现象,它使得我们得以看到59%的月面。主要有以下原因:

1。在椭圆轨道的不同部分,自转速度与公转角速度不匹配。 2。白道与赤道的交角。

月球的物理状况---月面的地形主要有:

环形山 这个名字是伽利略起的。它是月面的显著特征,几乎布满了整个月面。 最大的环形山是南极附近的贝利环行山,直径295千米,比海南岛还大一点。小的环行山

甚至可能是一个几十厘米的坑洞。直径不小于1000米的大约有33000个。占月面表面积的 7-10%。

有个日本学者1969年提出一个环形山分类法,分为克拉维型(古老的环形山,一般都

面目全非,有的还山中有山)哥白尼型(年轻的环形山,常有“辐射纹”,内壁一般带有

同心圆状的段丘,中央一般有中央峰)阿基米德形(环壁较低,可能从哥白尼型演变而来 )碗型和酒窝型(小型环形山,有的直径不到一米)。

月海 肉眼所见月面上的阴暗部分实际上是月面上的广阔平原。由于历史上 的原因,这个名不副实的名称保留到了现在。

已确定的月海有22个,此外还有些地形称为“月海”或“类月海”的。公认的22 个绝大多数分布在月球正面。背面有3个,4个在边缘地区。在正面的月海面积略大于

50%,其中最大的“风暴洋” 面积越五百万平方公里,差不多九个法国的面积总和。 大多数月海大致呈圆形,椭圆形,且四周多为一些山脉封闭住,但也有一些海是

连成一片的。除了“海”以外,还有五个地形与之类似的“湖”----梦湖、死湖、夏 湖、秋湖、春湖,但有的湖比海还大,比如梦湖面积7万平方千米,比汽海等还大得

多。 月海伸向陆地的部分称为“湾”和“沼”,都分布在正面。湾有五个:露湾、暑 湾、中央湾、虹湾、眉月湾;沼有腐沼、疫沼、梦沼三个,其实沼和湾没什么区别。

月海的地势一般较低,类似地球上的盆地,月海比月球平均水准面低1-2千米,

个别最低的海如雨海的东南部甚至比周围低6000米。月面的返照率(一种量度反射太阳光本领的物理量)也比较低,因而看起来现得较黑。

月陆和山脉 月面上高出月海的地区称为月陆,它一般比月海水准面高2-3千 米,由于它返照率高,因而看来比较明亮。在月球正面,月陆的面积大致与月海相等

但在月球背面,月陆的面积要比月海大得多。 从同位素测定知道月陆比月海古老得多,是月球上最古老的地形特征。

在月球上,除了犬牙交差的众多环形山外,也存在着一些与地球上相似的山脉。月球上的山脉常借用地球上的山脉名,如阿尔卑斯山脉,高加索山脉等等,其中最长的山脉为亚平宁山脉,绵延1000千米,但高度不过比月海水准面高三,四千米。山脉上也有些峻岭山峰,过去对它们的高度估计偏高。现在认为大多数山峰高度与地球山峰高度相仿,最高的山峰(亦在月球南极附近)也不过9000米和 8000米。

月面上6000米以上的山峰有6个,5000-6000米20个,4000-5000米则有80个,1000米以 上的有200个。

月球上的山脉有一普遍特征:两边的坡度很不对称,向海的一边坡度甚大,有时 为断崖状,另一侧则相当平缓。

除了山脉和山群外,月面上还有四座长达数百千米的峭壁悬崖。其中三座突出在 月海中,这种峭壁也称“月堑”。

月面辐射纹 月面上还有一个主要特征是一些较“年轻”的环形山常带有美丽的“辐射纹”,这是一种以环形山为辐射点的向四面八方延伸的亮带,它几乎以笔直的方向穿过山系、月海和环形山。辐射文长度和亮度不一,最引人注目的是第谷环形山的辐射纹,最长的一条长1800千米,满月时尤为壮观。其次,哥白尼和开普勒两个环形山也有相当美丽的辐射 纹。据统计,具有辐射纹的环形山有50个。

形成辐射纹的原因至今未有定论。实质上,它与环形山的形成理论密切联系。现在许多人都倾向于陨星撞击说,认为在没有大气和引力很小的月球上,陨星撞击可能使高温碎块飞得很远。而另外一些科学家认为不能排除火山的作用,火山爆发时的喷 射也有可能形成四处飞散的辐射形状。

月谷(月隙) 地球上有着许多著名的裂谷,如东非大裂谷。月面上也有这种构造----那些看来弯弯曲曲的黑色大裂缝即是月谷,它们有的绵延几百到上千千米,宽度从几千米到几十千米不等。那些较宽的月谷大多出现在月陆上较平坦的地区,而那些较窄、较小的月谷(有时又称为月溪)则到处都有。最著名的月谷是在柏拉图环形山的东南连结雨海和冷海的阿尔卑斯大月谷,它把月面上的阿尔卑斯山拦腰截断,很是壮观。从太空拍得的照片估计,它长达130千米,宽10-12千米。

从何而来?---月球形成之迷

月球是外星人的宇宙飞船:这并非无稽之谈,因为科学的动力就在于大胆的想象,没有创见就不会有新的突破,爱因斯坦提出的相对论当时又何尝不是无稽之谈。而中国人在科学上欠缺的正是这种大胆的创见。

我们为什么总看不到月球的背面

月球总以一个面对着地球.是因为月球的自传和公转周期是相同的.(27.32166日)

要理解这一现象,你可以做一个实验.画一个圆,标出正东西南北方向.你站在圆心(代表地球),再找一个朋友,站在圆上,让他面部朝前(即不扭动脖子),沿着圆逆时针挪动,要求他在沿着圆挪动的时候,保持面部始终朝向圆心,也就是你.那么这样一个过程就基本模拟了月亮饶地球转动的过程.

很明显,在这样一个过程中,你的朋友始终是一个面(前面)面向你.下面理解为什么在这样一个过程中,公转周期等于自转周期.

你的朋友从你的正北方出发,绕着你转动,再一次出现在正北方的时候,他就完成了一个公转周期.(类似于月亮饶地球公转一周的时间.)

下面看看他的自转时间是多少.我们不妨还设定当你的朋友在你的正北位置,面部朝向正南时的姿态为初始姿态..然后我们就可以发现当你的朋友逆时针挪动到你的正西方位置时,他的自转姿态就发生了逆时针90度的旋转.(如果你的朋友在过程中不"自转"的话,那么当他在此位置时,他面向的不是你,而仍然是朝向正南方向.而实际实验时你的朋友在此位置却是朝向正东方向,所以他相对与初始位置逆时针绕自己旋转了90度.

类似地,当他走到你的正南方向时,他相对于初始姿态自传了180度.当他走到你的正东方向时,他相对于初始姿态自传了270度.当他再次走到你的正北方向时,他相对于初始姿态自传了360度.也就是说他完成了一个自转周期.

因为完成一个公转过程就刚好完成了一个自转过程,所以从时间上来看,这个自转周期就等于公转周期.因为在整个过程中,你的朋友总是以身体面部朝向你,也就是说,月亮总是以一个面朝向地球.

广寒宫——月球

每当夜幕降临,一轮明月升上夜空,清澈的月光洒满大地,让人产生无数情思遐想。文人墨客更是对月亮倍加青睐,唐代诗人张若虚的“江上何人初见月,江月何年初照人”,还有宋代文学家苏轼的“明月几时有,把酒问青天”,都可称得上是脍炙人口的咏月佳句。

月球俗称月亮,也称太阴。在中国古代神话中,关于月亮的故事数不胜数。古希腊神话中,月亮女神的名字叫阿尔特弥斯,同时她也是狩猎女神。月球的天文符号好象弯弯的娥眉,同时象征着阿尔特弥斯的神弓。

皓月当空,我们能够清楚地看到它上面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为 “海”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的环形山是牛顿环形山,深达8788公里。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。

月球的年龄,大约也是46亿年,它与地球形影相随,关系密切。月球也有壳、幔、核等分层结构。最外层的月壳平均厚度约为60~65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的 3/11。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月面的重力差不多相当于地球重力的1/6。

月球的形成有以下几个观点。

一.分裂说。这是最早解释月球起源的一种假设。早在1898年,著名生物学家达尔文的儿子乔治·达尔文就在《太阳系中的潮汐和类似效应》一文中指出,月球本来是地球的一部分,后来由于地球转速太快,把地球上一部分物质抛了出去,这些物质脱离地球后形成了月球,而遗留在地球上的大坑,就是现在的太平洋。这一观点很快就收到了一些人的反对。他们认为,以地球的自转速度是无法将那样大的一块东西抛出去的。再说,如果月球是地球抛出去的,那麽二者的物质成分就应该是一致的。可是通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,发现二者相差非常远。

二.俘获说。这种假设认为,月球本来只是太阳系中的一颗小行星,有一次,因为运行到地球附近,被地球的引力所俘获,从此再也没有离开过地球。还有一种接近俘获说的观点认为,地球不断把进入自己轨道的物质吸积到一起,久而久之,吸积的东西越来越多,最终形成了月球。但也有人指出,向月球这样大的星球,地球恐怕没有那麽大的力量能将它俘获。


三.同源说。这一假设认为,地球和月球都是太阳系中浮动的星云,经过旋转和吸积,同时形成星体。在吸积过程中,地球比月球相应要快一点,成为“哥哥”。这一假设也受到了客观存在的挑战。通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,人们发现月球要比地球古老得多。有人认为,月球年龄至少应在70亿年左右。

四.大碰撞说。这是近年来关于月球成因的新假设。1986年3月20日,在休士顿约翰逊空间中心召开的月亮和行星讨论会上,美国洛斯阿拉莫斯国家实验室的本兹、斯莱特里和哈佛大学史密斯天体物理中心的卡梅伦共同提出了大碰撞假设。这一假设认为,太阳系演化早期,在星际空间曾形成大量的“星子”,星子通过互相碰撞、吸积而长大。星子合并形成一个原始地球,同时也形成了一个相当于地球质量0.14倍的天体。这两个天体在各自演化过程中,分别形成了以铁为主的金属核和由硅酸盐构成的幔和壳。由于这两个天体相距不远,因此相遇的机会就很大。一次偶然的机会,那个小的天体以每秒5千米左右的速度撞向地球。剧烈的碰撞不仅改变了地球的运动状态,使地轴倾斜,而且还使那个小的天体被撞击破裂,硅酸盐壳和幔受热蒸发,膨胀的气体以及大的速度携带大量粉碎了的尘埃飞离地球。这些飞离地球的物质,主要有碰撞体的幔组成,也有少部分地球上的物质,比例大致为0.85:0.15。在撞击体破裂时与幔分离的金属核,因受膨胀飞离的气体所阻而减速,大约在4小时内被吸积到地球上。飞离地球的气体和尘埃,并没有完全脱离地球的引力控制,他们通过相互吸积而结合起来,形成全部熔融的月球,或者是先形成几个分离的小月球,在逐渐吸积形成一个部分熔融的大月球。

月亮成分

45亿年前,月球表面仍然是液体岩浆海洋。科学家认为组成月球的矿物克里普矿物(KREEP) 展现了岩浆海洋留下的化学线索。KREEP实际上是科学家称为“不兼容元素”的合成物--那些无法进入晶体结构的物质被留下,并浮到岩浆的表面。对研究人员来说,KREEP是个方便的线索,来明了月壳的火山运动历史,并可推测彗星或其他天体撞击的频率和时间。

月壳由多种主要元素组成,包括:铀、钍、钾、氧、硅、镁、铁、钛、钙、铝及氢。当受到宇宙射线轰击时,每种元素会发射特定的伽玛辐射。有些元素,例如:铀、钍和钾,本身已具放射性,因此能自行发射伽玛射线。但无论成因为何,每种元素发出的伽玛射线均不相同,每种均有独特的谱线特征,而且可用光谱仪测量。

直至现在,人类仍未对月球元素的丰度作出面性的测量。现时太空船的测量只限于月面一部分。

天秤动

由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。

7,沙罗周期的简介

沙罗周期是日食和月食的周期,是指月球在它的轨道盘上运行一周(以便月球交点沿着轨道公转一周)所需的时间——223个朔望月,即223 × 29.53059 天 = 6585.32157 天,也就是18年零11.32天(如果有5个闰年就是18年零10.32天)。这是古巴比伦人对日食的观测后发现的其周期性,“沙罗”就是重复的意思。这个时间接近242个交点月(242 × 27.21222 天 = 6585.35724 天)。因为沙罗周期有0.32天的“零头”,因此必须等3个沙罗周期,才能在地球上的相似地点看到日食再次发生。世界各地在沙罗周期中的连续食,有三分之一的是通过这种方式发生的,在3个沙罗周期后,即54年零33天后,日食几乎又在相同的地理位置出现。12个不同的主要沙罗日食(Grand Saros eclipse)现在正在发生,其中一个的食分别发生在1937年、1955年、1973年、1991年和2009年,每一次食的持续时间都在7.5分钟内。发生在降交点附近的月食,属于奇数列的沙罗序列。这种序列的第一个月食发生时,月球穿越地影的南缘,然后在每一次的沙罗周期中逐渐北移。“沙罗”一词在拉丁语里就是重复的意思,每个沙罗周期平均约有71次交食,包括日食43次,月食28次。由于地球绕太阳和月亮绕地球的公转运动都有一定的规律,因此日食和月食的发生也具有其循环的周期性。有了沙罗周期,我们就可以预报月食了。例如1991年7月11日,发生了一次月全食,掩食带穿过拉丁美洲及太平洋地区。人们往前推18年零11天,1973年6月30日一定也发生了一次日食,那次日全食的掩食带横穿了非洲大陆。如果往后推一个沙罗周期的时间,人们就能算出2009年7月22日也将发生一次日食,这就是发生在中国长江流域的日全食。

8,沙罗周期的变化规律

沙罗周期沿着时间推移如果这3个周期每6585.322天后完全重复,日蚀便也会完全地重复在每个沙罗周期后。然而,这些周期彼此间有细微的出入,这就引起每18年的沙罗周期后日蚀发生的几何位置的改变。值得注意的是,19执政官年减去223个朔望月大约等于11个小时。这个长达11个小时的缝隙就是沙罗周期沿着时间推迟的原因。假如把当前日蚀记做日蚀A,把一个沙罗周期后与之对应的的日蚀记做日蚀B,在任何一个位置太阳和月球必须连成一条直线形成满月。然而,太阳在B将不会回到离月亮交点相同距离的位置上(日蚀A时太阳的的位置)。在它完成那第19个19执政官年之前它有11个小时的路程。太阳在这11个小时中以平均27分钟移动一弧度的速度移动(大约一度),因此,日蚀B发生的位置便向西漂流0.5度(注意,日蚀发生的条件必须是太阳和月亮交点附近18度的范围内)。因为这个半度的漂移,沙罗周期也就有了开始和结束,在70到80次连续的日蚀后才会完全和以前重合。这样,整个沙罗周期的循环就需要12到14个世纪的的时间。假设我们看见的日蚀是在月亮北交点东18度左右,此时的月球也在黄道的北边1.5度。月亮的阴影投在太阳北边以至于仅仅和地球表面的北极地区檫边而过,在北极附近形成一次日偏蚀。18年后的下一次日蚀将会多靠近月亮北交点半度左右,使月球的阴影向南移动。日偏蚀将会是“比较深的”(更多的太阳被阴影覆盖),持续时间更长,在地球表面的覆盖面积也更大。除此之外,月球阴影向地球赤道移动。最后,在10到11次日蚀之后,月亮的本影区投到地球上,引起一次日全蚀(或环蚀)。接下来的日蚀将全是日全蚀(或日环蚀)。在赤道附近将会有整个沙罗家族中持续时间最长的日蚀发生(大约35到40次日蚀后,当日蚀发生点刚好在月亮北交点之后。整个日蚀将以相反的顺序重复前一半的过程。在多个日全蚀之后,沙罗家族以10到11次日偏蚀在南极附近结束。最后,新月离月亮北交点太远太远,使得月亮的阴影不能投到地球表面,这次沙罗循环也因此结束。如果日蚀在月亮南交点处发生,周期将是相同的,除非日蚀在南极发生并开始向北极移动。一个月蚀沙罗循环的推移情况也是相似的。一次有多少个沙罗循环同时发生正如我已经说过的,日蚀只发生在太阳处于月亮南北交点的前后18天内。这个长达一个月的时期叫做“日蚀季节”;期间可能发生1次到3次日蚀。而天空中的日蚀现象蚀非常频繁的,所以事实上,每个日蚀季节都属于不同的沙罗循环,月蚀沙罗循环也类似。除此之外,随着旧沙罗循环的逐渐消失,新的循环开始代替他,而且一直交迭下去。因此就有可能多个沙罗循环作用一个日蚀季节。大体上,任何一段时间内,都会有38到42个太阳沙罗周期同时作用,月亮沙罗周期也一样,每个都在他们各自的阶段。因此,整个沙罗周期的结构是极其复杂的。

精华总结

雨露,是万物生长的灵丹妙药,它能让万物欣欣向荣,给人带来希望和欢乐。起名,是给孩子取名最重要的一步,因为名字,在某种程度上就是一种文化。一个好的名字,可以让孩子从小拥有一个好的起点。那么,旸字取名呢,有着什么样的寓意及含义?

1、旸是五行金之字,五行属水,寓意孩子聪明机智,有大智慧,富有爱心。

根据五行属性来取名,金能克水,就像是金被水淹没了,所以会出现水变少,阳气不充足的情况。而旸字五行属水,表示有希望的样子,寓意孩子聪明机智,有大智慧,富有爱心,有爱心之义,对人非常友好,人缘非常好。由于在起名时需要注意五行八字,所以名字要避开太多不利因素。例如孩子取名为旸这个名字时,可选择五行属金且与水相冲或水火相济或金水相济等字面寓意相搭。

2、旸字是木之金之字,五行属木,为金之态,寓意孩子金木水火土五行协调,和谐发展。

雨露的滋润,日出而作,日落而息,都让人感到无比满足。旸,字音shèng,寓意着孩子有一颗包容和感恩之心。这与“日出而作、日落而息”有异曲同工之妙……旸给人带来欢乐、吉祥的同时,也寓意着孩子金木水火土协调发展……

3、旸是一种很有灵性的字,可形容孩子生机勃勃,乐观向上。

【旸】有光明、温暖、明朗的意思,可用作名字。【阳凯是太阳之意。【阳阳阳】阳代表明亮,阳代表光明及温暖。用阳代表光明的事物,表示孩子生机勃勃,乐观向上。【阳欣可表示欣欣向荣之意。【阳和】可表示温暖的意思。

4、旸字取名,寓意孩子乐观向上,对生活充满希望。

旸字寓意孩子乐观向上,对生活充满希望,乐观积极的生活态度,有助于提高孩子的自信心。另外旸字取名还有着积极向上、乐观开朗、吉祥幸福、生活美满、幸福美满等美好祝愿,其寓意吉祥。而且旸在中国汉字里是非常多见的一个字,我们可以将这个字用在名字中来表达。旸字取名代表着孩子未来很美好而充满希望。如果将其用于起名中,则代表着孩子未来会有很多希望。同时也象征着孩子将来会有所成就。

5、旸作为名字有吉祥富贵之意。

旸这个名字,在很早的时候就被赋予了吉祥富贵的寓意,因为它在名字中的意思很多。所以有很高的吉祥富贵之意。这个名字将孩子命名为【旸】具有美好的寓意。

上一篇:iphone3gs越狱

下一篇:英译中文