李巧銮的个人简介
李巧銮,女,汉族,河北省衡水人。基础数学博士,河北师范大学数信学院教授。
人物经历
教育背景1991-1995,河北师范大学数学教育专业学士。
1995-1998,河北师范大学基础数学专业硕士。
2003-2006,河北师范大学基础数学专业博士。
工作经历2013年,香港大学访问学者。
1998年,在河北师范大学工作。
科研方向
教学课程主讲《数学分析》, 《常微分方程》, 《高等数学》
研究领域微分方程稳定性
著述成果
1. Qiaoluan Li, Wingsum Cheung, An Opial-type inequality on time scales. Absract and Applied Analysis, Article ID 534083, 5pages, 2013.(SCI)
2. Qiaoluan Li, Wingsum Cheung, ?Interval Oscillation Criteria for Second Order Forced Delay Differential Equations under Impulse Effects, Electronic J. Diff. Equa., ?2013(44):1-11, 2013 (SCIE)
3. Qiaoluan Li, Haiyan Liang, Zhenguo Zhang, Yuanhong Yu .Oscillation of Second Order Self-conjugate Differential Equation with Impulses[J]. Journal of Computational and Applied Mathematics,2006,197: 78-88.(SCI)
4. Qiaoluan Li, Haiyan Liang, Wenlei Dong, Zhenguo Zhang. Existence of nonoscillatory solutions of?
higher-order difference equations with positive and negative coefficients[J]. Bull. Korean Math.Soc., 2008,?
45: 23-31.(SCIE)
5. Haiyan Liang, Qiaoluan Li, Zhenguo Zhang. New oscillatory criteria for higher-order nonlinear neutral delay differential equation[J]. Nonlinear Analysis, 2008, 69: 1719-1731.(SCI)
6. Qiaoluan Li, Zhenguo Zhang, Fang Guo, Zhiyong Liu, Haiyan Liang. Oscillatory Criteria for Third Order Difference Equation With Impulses[J]. ?Journal of Computational and Applied Mathematics, 2009, 225: 80-86. (SCI)
7. Zhenguo Zhang, Wenlei Dong, Qiaoluan Li , Haiyan Liang. Positive solutions for higher order nonlinear neutral dynamic equations on time scales[J]. Appl.Math.Model., 2009, 33: 2455-2463.(SCI)
8. Qiaoluan Li , Chunjiao Wang, Fang Li, Haiyan Liang, Zhenguo Zhang. Oscillation of Sublinear Difference Equations with Positive Neutral Term[J]. Journal of Applied Mathematics & Computing,2006, 20: 305-314.(EI)
9. Zhang Zhen-guo, Dong Wen-lei, Li Qiao-luan, Existence of nonoscillatory solutions for higher oder neutral?
dynamic equations on time scales, J. Appl Math Comput, 28(2008), 29-38. (EI)
10. Qiaoluan Li, Lina Zhou, Oscillation criteria for second-order impulsive dynamic equations on time scales, ?Applied Mathematics E-Notes, 11(2011), 33-40.
11. Haifeng Liu, Qiaoluan Li, Asymptotic behavior of ?second-order impulsive differential equations, Electronic Journal of Differential Equations, Vol. 2011(2011), No. 33, pp. 1--7.
12. Li Qiao-luan, Zhang Zhen-guo ,Existence of solutions to n-th order neutral dynamic equations on time scales,Electronic Journal of Differential Equations, Vol. 2010(2010), No. 151, pp. 1--8.
13. Li Qiaoluan, Guo ?Fang, ?Oscillation of ?Solutions ?to ?Impulsive ?Dynamic Equations ?On ? Time Scales, ?Eelectronic J. Diff.Equa., 2009(2009), No.122, 1-7.
14. Li Qiao-luan, Liu Zhi-yong, Oscillation of Nonlinear Equations On Time Scales, J. Appl Math & Informatics, 27(2009), No, 1-2, 327-334.